Volatility Timing in the Vietnamese Stock Market

Nguyen Thi Hoang Anh1,
1 Foreign Trade University

Main Article Content

Abstract

In this paper, we evaluate the economic value that arise from incorporating conditional volatility when forecasting the covariance matrix of returns for both short and long horizons in the Vietnamese stock market, using the volatility timing framework of Fleming et al. (2001). We report three main findings. First, investors are willing to pay to switch from the static to a dynamic volatility timing strategy. Second, there is negligible difference in forecast performance among short and memory volatility models. However, the more parsimonious EWMA family models tend to produce better forecasts of the covariance matrix than those produced by the GARCH family volatility models at all investment horizons. Third, when transaction costs are taken into account, the gains from daily rebalanced dynamic portfolios deteriorate. However, it is still worth implementing the dynamic strategies at lower rebalancing frequencies. Our results are robust to estimation error in expected returns, the choice of risk aversion coefficient and estimation windows.       

Article Details

References

References
1. BAILLIE, R. T., BOLLERSLEV, T. & MIKKELSEN, H. O. 1996. Fractionally integrated generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 74, 3--30.
2. BEKAERT, G. & HARVEY, C. R. 1997. Emerging equity market volatility. Journal of Financial economics, 43, 29-77.
3. BOLLERSLEV, T. 1986. Generalised autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307--327.
4. DAVIDSON, J. 2004. Moment and memory properties of linear conditional heteroscedasticity models, and a new model. Journal of Business & Economic Statistics, 22, 16--29.
5. ENGLE, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica, 50, 987--1007.
6. ENGLE, R. F. 2002. Dynamic conditional correlation: A simple class of multivariate generalized autoregressive conditional heteroskedasticity models. Journal of Business & Economic Statistics, 20, 339--350.
7. ENGLE, R. F. & BOLLERSLEV, T. 1986. Modelling the persistence of conditional variances. Econometric Reviews, 5, 1--50.
8. ENGLE, R. F. & COLACITO, R. 2006. Testing and valuing dynamic correlations for asset allocation. Journal of Business and Economic Statistics, 24, 238--253.
9. ENGLE, R. F. & LEE, G. 1999. A Long Run and Short Run Component Model of Stock Return Volatility In: ENGLE, R. & WHITE, H. (eds.) Cointegration, Causality, and Forecasting: A Festschrift in Honor of Clive WJ Granger. New York: Oxford University Press.
10. ENGLE, R. F. & SHEPPARD, K. 2001. Theoretical and empirical properties of dynamic conditional correlation multivariate GARCH. NBER Working Paper.
11. FLEMING, J., KIRBY, C. & OSTDIEK, B. 2001. The economic value of volatility timing. The Journal of Finance, 56, 329--352.
12. FLEMING, J., KIRBY, C. & OSTDIEK, B. 2003. The economic value of volatility timing using “realized” volatility. Journal of Financial Economics, 67, 473--509.
13. GEWEKE, J. & PORTER-HUDAK, S. 1983. The estimation and application of long memory time series models. Journal of Time Series Analysis, 4, 221--238.
14. GIRAITIS, L., KOKOSZKA, P., LEIPUS, R. & TEYSSIÈRE, G. 2003. Rescaled variance and related tests for long memory in volatility and levels. Journal of Econometrics, 112, 265-294.

15. HAN, Y. 2006. Asset allocation with a high dimensional latent factor stochastic volatility model. The Review of Financial Studies, 19, 237--271.
16. HARRIS, R. D. F. & NGUYEN, A. 2013. Long Memory Conditional Volatility and Dynamic Asset Allocation. International Journal of Forecasting, 29, 258--273.
17. HARVEY, C. R. 1995. Predictable risk and returns in emerging markets. Review of Financial studies, 8, 773-816.
18. HYDE, S., NGUYEN, N. & POON, S.-H. 2010. International Portfolio Choice and the Economic Value of Jump Timing. Seminars Inquire Europe. Rome, Italy.
19. JPMORGAN 1994. RiskMetrics™, Technical Document. JP Morgan.
20. LO, A. W. 1991. Long-Term Memory in Stock Market Prices. Econometrica, 59, 1279-1313.
21. NIGUEZ, T. M. & RUBIA, A. 2006. Forecasting the conditional covariance matrix of a portfolio under long-run temporal dependence. Journal of Forecasting, 25, 439-458.
22. SADIQUE, S. & SILVAPULLE, P. 2001. Long-term memory in stock market returns: international evidence. International Journal of Finance & Economics, 6, 59-67.
23. TEYSSIERE, G. 1998. Multivariate long-memory ARCH modelling for high frequency foreign exchange rates. Citeseer.
24. THORP, S. & MILUNOVICH, G. 2007. Symmetric versus asymmetric conditional covariance forecasts: Does it pay to switch? Journal of Financial Research, 30, 355-377.
25. TRAN MANH TUYEN 2011. Modeling Volatility Using GARCH Models: Evidence from Vietnam. Economic Bulletin, 31, 1935--1942.
26. VO XUAN VINH & NGUYEN THI KIM NGAN 2011. Volatility in Stock Return Series of Vietnam Stock Market. Science & Technology Development, , 14, 5--21.
27. ZUMBACH, G. 2006. The Riskmetrics 2006 Methodology. Technical Report, RiskMetrics Group.
28. ZUMBACH, G. 2013. The statistical properties of the innovations in multivariate ARCH processes in high dimensions. Quantitative Finance, 13, 29-44.